Fatores determinantes dos erros de previsão dos analistas de mercado para variáveis fiscais no Brasil

Resumo

O objetivo deste estudo é investigar fatores determinantes dos erros de previsão dos analistas de mercado para variáveis fiscais brasileiras. Os dados para realização da pesquisa foram obtidos no Prisma Fiscal, o sistema do Ministério da Economia de coleta e divulgação de expectativas do mercado para variáveis fiscais. Os dados coletados se referem à arrecadação, receita líquida e despesa total, no período de novembro de 2015 a dezembro de 2018.  O Mean Absolute Percentage Error (MAPE) e z foram utilizados para medir a qualidade da previsão dos analistas de mercado. A utilização do valor z como uma medida do erro de previsão é uma das contribuições desta pesquisa. Entre os resultados obtidos, destacam-se: a hipótese de que o horizonte temporal interfere na qualidade da previsão não foi rejeitada para horizontes de um e dois anos; a dispersão das previsões não apresentou alteração substancial; e a hipótese de viés otimista não foi confirmada. Pode-se concluir que, para essa amostra, a temporalidade é um fator determinante do erro de previsão dos analistas de mercado para variáveis fiscais. A pesquisa contribui com a discussão sobre erro de previsão nas áreas de Gestão Financeira Pública e Contabilidade Pública.

Downloads

Não há dados estatísticos.

Biografia do Autor

Francisca Aparecida de Souza, Universidade de Brasília -UnB

Doutora em Ciências Contábeis pela Universidade de Brasília (UnB); Professora do Departamento de Ciências Contábeis e Atuariais da Universidade de Brasília (UnB); Endereço: Campus Darcy Ribeiro – Prédio da FACE, Sala AT 82/4 Asa Norte, Brasília – DF – Brasil. CEP: 70.910-900; Telefone: 55-61-992142836

César Augusto Tibúrcio Silva, Universidade de Brasília -UnB

Doutor em Contabilidade pela Universidade de São Paulo (USP); Professor Titular do Programa de Pós-Graduação em Ciências Contábeis da Universidade de Brasília (PPGCont/UnB); Endereço: Campus Darcy Ribeiro – Prédio da FACE – Sala A1-112, Asa Norte, Brasília – DF – Brasil. CEP: 70.910-900; Telefone: 55-61-3107-0812.

Karla Roberta Castro Pinheiro Alves, Universidade de Brasília -UnB

Doutoranda do Programa de Pós-Graduação em Ciências Contábeis da Universidade de Brasília (UnB); Professora do Departamento de Ciências Contábeis da Universidade Estadual da Paraíba (UEPB); Endereço: Rua Baraúnas, 351 - Bairro Universitário-Campina Grande-PB – Brasil. CEP: 58429-500; Telefone: 55-83-98732-4692.

Referências

An, Z., Jalles, J. T., Loungani, P., & Sousa, R. M. (2018). Do IMF fiscal forecasts add value?

Journal of Forecasting, 37, 650-665.

Armstrong, J. S., & Collopy, F. (1992). Error Measures for Generalizing About Forecasting

Methods: Empirical Comparisons. International Journal of Forecasting, 8(1), 69-80.

Asimakopoulos, S., Paredes, J., & Warmedinger, T. (2020). Real-Time Fiscal

Forecasting Using Mixed-Frequency Data. Scandinavian Journal of Economics, 122(1), 369-390.

Banco Central do Brasil. (2018). Estoque de swap cambial caiu nos últimos dois anos.

Recuperado de https://www.bcb.gov.br/noticiasporano

Banco Central do Brasil. (2019). Focus Relatório de Mercado. Recuperado de

https://www.bcb.gov.br/publicacoes/focus

Brasil. Ministério da Economia. (2018). Prisma Fiscal—Nota Metodológica. Recuperado de http://www.fazenda.gov.br/prisma-fiscal/prisma-fiscal

Brasil. Ministério da Fazenda. (2016). Resultado do Tesouro Nacional. Secretaria do Tesouro

Nacional, 2(10). Recuperado de http://www.planalto.gov.br/ccivil_03/decreto-lei/del0200.htm

Brogan, M. (2012). The politics of budgeting: evaluating the effects of the political election

cycle on state-level budget forecast errors. Journal Public Administration, 36(1), 84-115.

Clement, M. (1999). Analyst forecast accuracy. Journal of Accounting and Economics, 27(3), 285-303.

Conselho Federal de Contabilidade. (2016). NBC TSP—Estrutura Conceitual para Elaboração e Divulgação de Informação Contábil de Propósito Geral pelas Entidades do Setor Público. Recuperado de http://www2.cfc.org.br/sisweb/sre/detalhes_sre.aspx?Codigo=2016/NBCTSPEC&arquivo=NBCTSPEC.doc

Costa, A. E., Filho, & Rocha, F. (2010). Como o mercado de juros futuros reage à

comunicação do Banco Central? Economia aplicada, 14(3), 265-292.

Costa, E. A. A. (2011). Fatores institucionais que influenciam a previsão das receitas

orçamentárias: Um estudo de caso dos governos estuais brasileiros (Dissertação de

mestrado). Universidade de Brasília, Brasília, DF.

Deus, J. D. B. V., & Mendonça, H. F. (2017). Fiscal forecasting performance in an emerging

economy: An empirical assessment of Brazil. Economic Systems, 41(3), 408-419.

Diebold, F., & Mariano, R. (2012). Comparing predictive accuracy. Journal of Business &

Economics Statistics, 20(1), 134-144.

Flyvbjerg, B. (2011). Over Budget, Over Time, Over and Over Again: Managing Major

Projects. In P. W. G. Morris, J. Pinto, & J. Söderlund (Eds.), The Oxford

Handbook of Project Management (pp. 321-344). Oxford: Oxford University Press.

Fortis, M. F. A., & Gasparini, C. E. (2017). Plurianualidade orçamentária no Brasil:

Diagnóstico, rumos e desafios. Brasília, DF: Enap.

Giacomini, R., Skreta, V., & Turen, J. (2020). Heterogeneity, inattention, and bayesian updates. American Economic Journal: Macroeconomics, 12(1), 282-309.

Guillén, O. T. C., Hecq, A., Issler, J. V., & Saraiva, D. (2015). Forecasting multivariate time

series under present-value model short- and long-run co-movement restrictions. International Journal of Forecasting, 31, 862-875.

Hope, O. (2003). Disclosure Practices, enforcement of accounting standards, and analysts´

forecast accuracy. Journal of Accounting Research, 41(2), 235-272.

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy.

International Journal of Forecasting, 22, 679-688.

Jonung, L., & Larch, M. (2006). Improving fiscal policy in the EU: The case for independent

Forecasts. Economic Policy, 21(47), 492-534.

Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32, 669-679.

Lei 200, 1967. Recuperado de http://www.planalto.gov.br/ccivil_03/decreto-lei/del0200.htm

Martinez, A. L. (2007). Determinantes da acurácia das previsões dos analistas do

mercado de capitais. UnB Contábil, 10(2).

Mckenzie, J. (2011). Mean absolute percentage error and bias in economic forecasting.

Economics Letters, 113, 259-262.

Merola, R., & Pérez, J. J. (2013). Fiscal forecast errors: Governments vs independent

agencies? European Journal of Political Economy, 32, 285-299.

Pina, A., & Venes, N. (2011). The political economy of EDP fiscal forecasts: An empirical

assessment. European Journal of Political Economy, 27, 534-546.

Pires, M. C. C. (2006). Credibilidade na política fiscal: Uma análise preliminar para o Brasil.

Revista Economia Aplicada, 10(3), 367-375.

Piza, E. C. (2019). Determinantes dos desvios de execução da política fiscal no Brasil. Revista

de Economia e Agronegócio, 17(2).

Reitano, V., Jones, P., Barrett, N., & Fowles, F. (2019). Forecast bias and capital reserves

accumulation. The Palgrave Handbook of Government Budget Forecasting, 377-396.

Surowiecki, J. (2004). The wisdom of crowds: Why the many are smarter than the few and

how collective wisdom shapes business, economies, societies, and nations. New York: Anchor Books.

Tetlock, P. E., & Gardner, D. (2015). Superforecasting: The Art and Science of Prediction.

New York, NY: Crown Publishing.

Publicado
12-08-2020
Como Citar
Souza, F. A. de, Silva, C. A. T., & Alves, K. R. C. P. (2020). Fatores determinantes dos erros de previsão dos analistas de mercado para variáveis fiscais no Brasil. RACE - Revista De Administração, Contabilidade E Economia, 19(2), 227-248. https://doi.org/10.18593/race.21417
Seção
Artigos teórico-empíricos