Os diferentes tipos de coagulantes naturais para o tratamento de água: uma revisão

Autores

DOI:

https://doi.org/10.18593/eba.24704

Palavras-chave:

Coagulante natural, Contaminação, Água, Tratamento

Resumo

Os coagulantes naturais são compostos naturais, como sementes, mucilagem e outros compostos baseados ou não baseados em plantas, que possuem a capacidade de remoção de contaminantes da água, esgotos e efluentes. Seu uso possui forte apelo ambiental, econômico e social, especialmente por se tratarem de compostos facilmente encontrados na natureza, como a moringa, quiabo e cáctus, e, por isso, baratos, aumentando a qualidade de vida da sociedade e mitigando o dano ou impacto ambiental. Esta revisão teve por objetivo apresentar os diferentes tipos de coagulantes naturais, seus respectivos usos e características. Esta pesquisa foi elaborada por meio de consultas na literatura especializada, com cerca de 160 artigos pesquisados e 38 efetivamente utilizados; concentrou-se em discutir os benefícios dos coagulantes naturais frente aos coagulantes químicos, bem como as implicações dos diferentes tipos de coagulantes naturais no tratamento de água, efluentes líquidos e esgotos. Em suma, verificou-se que as questões que envolvem a pesquisa dos coagulantes naturais é um caminho ambientalmente correto, barato e um objetivo a ser alcançado, visto a grande demanda de tratamento de água e efluentes que ocorre ao redor do mundo.

Downloads

Não há dados estatísticos.

Biografia do Autor

Igor Vivian de Almeida, Universidade Federal Rural da Amazônia

Mestre e Doutor em Biologia Comparada pela Universidade Estadual de Maringá; Professor no Magistério Superior da Universidade Federal Rural da Amazônia, Campus Capitão Poço.

Veronica Elisa Pimenta Vicentini, Universidade Estadual de Maringá

Mestra e Doutora em Genética pela Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo; Professora titular no Departamento de Biotecnologia, Genética e Biologia Celular da Universidade Estadual de Maringá.

Referências

Beyene HD, Hailegebrial, TD, Dirersa, WB. Investigation of Coagulation Activity of Cactus Powder in Water Treatment. J. appl. chem. 2016 Nov 30;9. DOI: https://doi.org/10.1155/2016/7815903

Muyibi SA, Noor MJMM, Ong DT, Kai KW. Moringa oleifera seeds as a flocculant in waste sludge treatment. Int. j. environ. stud. 2001;58(2):185-195. DOI: https://doi.org/10.1080/00207230108711326

Deppe T, Benndor J. Phosphorus reduction in a shallow hypereutrophic reservoir by in-lake dosage of ferrous iron. Water Res. 2002;36(18):4525-34. DOI: https://doi.org/10.1016/S0043-1354(02)00193-8

Martyna CN, Osmonda C, Edwardson JA, Barkera DJP, Harris EC, Lacey RF. Geographical relation between alzheimer's disease and aluminium in drinking water. The Lancet. 1989;8629(333):61-62. DOI: https://doi.org/10.1016/S0140-6736(89)91425-6

Li WW, Yu H-Q, He Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered Technologies. Energy Environ. Sci. 2013;7:911-24. DOI: https://doi.org/10.1039/C3EE43106A

Razali M, Kim JF, Attfield M, Budd PM, Drioli E, Lee YM, et al. Sustainable wastewater treatment and recycling in membrane manufacturing. Green Chem. [Internet]. 2015 [cited 2018 Apr 26];17:5196-205. Available from: http://pubs.rsc.org/en/content/articlehtml/2015/gc/c5gc01937k DOI: https://doi.org/10.1039/C5GC01937K

Ganjidoust H, Tatsumi K, Yamagishi T, Gholian, R. Effect of synthetic and natural coagulant on lignin removal from pulp and paper wastewater. Water Sci. Technol. [Internet]. 1997 [cited 2018 Apr 26];35:291-6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0273122396009432 DOI: https://doi.org/10.2166/wst.1997.0541

Jeon JR, Kim EJ, Kim YM, Murugesan K, Kim JH, Chang YS. Use of grape seed and its natural polyphenol extracts as a natural organic coagulant for removal of cationic dyes. Chemosphere. 2009;77(8):1090-98. DOI: https://doi.org/10.1016/j.chemosphere.2009.08.036

Dwarapureddi BK, Saritha V. Plant based coagulants for point of use water treatment – a review. Current environ. Eng. 2016;61-76. DOI: https://doi.org/10.2174/221271780301160527201624

Choy SY, Prasad KMN, Wu TY, Raghunandan ME, Ramanan RN. Utilization of plant-based natural coagulants as future alternatives towards sustainable water clarification. J. environ. sci. 2014;26(11):2178-89. DOI: https://doi.org/10.1016/j.jes.2014.09.024

Guibal E, Roussy J. Coagulation and flocculation of dyecontaining solutions using a biopolymer (chitosan). React. Funct. Polym. 2007;67(1):33-42. DOI: https://doi.org/10.1016/j.reactfunctpolym.2006.08.008

Chen L, Chen D, Wu C. Insight into flocculation mechanism of chitosan. J Donghua Univ (Eng. Ed.). 2003;20(1):90-93.

Liu B, Song H, Li Y. Effect of chitosan/polymeric aluminum composite flocculant on activated sludge. Adv Mat Res. 2011;383-90. DOI: https://doi.org/10.4028/www.scientific.net/AMR.383-390.3134

Yang R, Li H, Huang M, Yang H, Li A. A review on chitosan-based flocculants and their applications in water treatment. Water Res. 2016;95:59-89. DOI: https://doi.org/10.1016/j.watres.2016.02.068

Baumann ER. Water quality and treatment: a handbook of public water supplies. AlChE J. 1971;18(2).

Faye MCAS, Zhang Y, Yang J. Extracellular polymeric substances and sludge solid/liquid separation under Moringa oleifera and chitosan conditioning: a review. Environ. Tech. Rev. 2017;1(6):59-73. DOI: https://doi.org/10.1080/21622515.2017.1282544

Qasim SR, Motley EM, Zhu G. Water Works Engineering – Planning, Design & Operation. Prentice Hall PTR. 2000;844.

Guzmán LV, Ángel TC, García R. (2013). Reducción de la turbidez del agua usando coagulantes naturales: una revisión. Revista U.D.C.A Actua. Divulg. Cien. [Internet]. 2013 Jan-June 2013 [cited 2018 June 29];16(1):253-62. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-42262013000100029&lng=en&tlng=es DOI: https://doi.org/10.31910/rudca.v16.n1.2013.881

Ghernaout D, Moulay S, Messaoudene NA, Aichouni M, Naceur MW, Boucherit, A. Coagulation and chlorination of NOM and algae in water treatment. A review. J. environ. monit. [Internet]. 2014 [cited 2018 June 29];6(2):23-34. Available from: http://www.sciencepublishinggroup.com/j/ijema DOI: https://doi.org/10.11648/j.ijema.s.2014020601.14

Graham N, Gang F, Geoffrey F, Watts M. Characterisation and coagulation performance of a tannin-based cationic polymer: A preliminary assessment. Colloids Surf. A Physicochem. Eng. Asp. 2008 Sept;327(1-3):9-16. DOI: https://doi.org/10.1016/j.colsurfa.2008.05.045

Saranya P, Ramesh ST, Gandhimathi R. Effectiveness of natural coagulants from non-plant-based sources for water and wastewater treatment. Desalination and Water Treatment. 2013;52:6030-39. DOI: https://doi.org/10.1080/19443994.2013.812993

Nefale AD, Kamika I, Obi CL, Momba MNB. The Limpopo Non-Metropolitan Drinking Water Supplier Response to a Diagnostic Tool for Technical Compliance. Int J Environ Res Public Health. 2017;14(7):810. DOI: https://doi.org/10.3390/ijerph14070810

Vijayaraghavan G, Sivakumar T, Kumar VA. Application of plant based coagulants for waste water treatment. Int J Adv. Eng Res Stud. [Internet]. 2011 [cited 2018 Mar 15];88-92. Available from: https://pdfs.semanticscholar.org/f5dc/1a3896cd1f1c67e0c277ebfbe970e8afae89.pdf

Aboulhassan MA, Souabi S, Yaacoubi A, Baudu M. Coagulation efficacy of a tannin coagulant agent compared to metal salts for paint manufacturing wastewater treatment. Desal. wat. treat. [Internet]. 2016 [cited 2018 Apr 18];57(41). Available from: https://www.tandfonline.com/doi/abs/10.1080/19443994.2015.1101016?journalcode=tdwt20. DOI: https://doi.org/10.1080/19443994.2015.1101016

Karanja A, Fengting L, Ng’ang’a W. Use of cactus opuntia as a natural coagulant: water treatment in developing countries. Int. J. Adv. Res. 2017;5(3):884-94. DOI: https://doi.org/10.21474/IJAR01/3586

Formentini-Schmitt DM, Fagundes-Klen MR, Veit MT, Palácio SM, Trigueros DEG, Bergamasco R, et al. Potential of the Moringa oleifera saline extract for the treatment of dairy wastewater: application of the response surface methodology. Environ Technol. 2018;40(17):2290-99. DOI: https://doi.org/10.1080/09593330.2018.1440012

Galan CR, Silva MF, Mantovani D, Bergamasco R, Vieira MF. Green synthesis of copper oxide nanoparticles impregnated on activated carbon using Moringa oleifera leaves extract for the removal of nitrates from water. Wiley Onle Library. 2018;96(11):2378-86. DOI: https://doi.org/10.1002/cjce.23185

Tavares FO, Pinto LAM, Bassetti FJ, Vieira MF, Bergamasco R, Vieira AMS. Environmentally friendly biosorbents (husks, pods and seeds) from Moringa oleifera for Pb (II) removal from contaminated water. Environ Technol. 2017;38(24):3145-55. DOI: https://doi.org/10.1080/09593330.2017.1290150

Oliveira AM, Férnandes MS, Abreu Filho BA, Gomes RG, Bergamasco R. Inhibition and removal of staphylococcal biofilms using Moringa oleifera Lam. aqueous and saline extracts. J Env. Chem. Eng. 2018;6(2):2011-16. DOI: https://doi.org/10.1016/j.jece.2018.02.043

Barrado-Moreno MM, Beltrán-Heredia J, Martín-Gallardo J. Removal of Oocystis algae from freshwater by means of tannin-based coagulant. J Appl Phycol. 2016;28:1589-95. DOI: https://doi.org/10.1007/s10811-015-0718-y

Beltrán-Heredia J, Sanchez-Martin J, Martin-Sanchez C. Remediation of dye-polluted solutions by a new tannin-based coagulant. Ind. Eng. Chem. Res. 2011;50(2):686-93. DOI: https://doi.org/10.1021/ie101148y

Fedala N, Lounici H, Drouiche N, Mameri N, Drouiche M. Physical parameters affecting coagulation of turbid water with Opuntia ficus-indica cactus. Ecol. Eng. 2015;77: 33-36. DOI: https://doi.org/10.1016/j.ecoleng.2015.01.007

Yadav KN, Kadam PV, Patel JA, Patil MJ. Strychnos potatorum: revisão fitoquímica e farmacológica. Pharmacogn Rev. 2014;15(8):61-66. DOI: https://doi.org/10.4103/0973-7847.125533

Sarawgi G, Kamra A, Suri N, Kaur A, Sarethy IP. Effect of Strychnos potatorum Linn. Seed Extracts on Water Samples from Different Sources and with Diverse Properties. Water Environ. Pollut. 2009;6(3):13-17.

Okolo BI, Nnaji PC, Menkiti MC, Onukwuli OD. A kinetic investigation of the pulverized okra pod induced coag-flocculation in treatment of paint wastewater. American J Anal. Chem. 2015;7(6):610-22. DOI: https://doi.org/10.4236/ajac.2015.67059

Freitas TKFS, Oliveira VM, Souza MTF, Geraldino HCL, Almeida VC, Fávaro SL, et al. Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (a. esculentus) mucilage as natural coagulant. Ind. Crops Prod. 2015;76:538-44. DOI: https://doi.org/10.1016/j.indcrop.2015.06.027

Fahmi MR, Hamidin N, Abidin CZA, Fazara MAU, Hatim MDI. Performance evaluation of okra (abelmoschus esculentus) as coagulant for turbidity removal in water treatment. Muham. Ridw. Fahmi. 2014;594-95, 226-30. DOI: https://doi.org/10.4028/www.scientific.net/KEM.594-595.226

Nharingo T, Moyo M. Application of Opuntia ficus-indica in bioremediation of wastewaters. A critical review. J. environ. manag. 2015;166:55-72. DOI: https://doi.org/10.1016/j.jenvman.2015.10.005

Downloads

Publicado

17-08-2020

Como Citar

Lima, P. R., Almeida, I. V. de, & Vicentini, V. E. P. (2020). Os diferentes tipos de coagulantes naturais para o tratamento de água: uma revisão. Evidência, 20(1), 9–12. https://doi.org/10.18593/eba.24704

Edição

Seção

Biociências